Contenedores Pretty-print C++ STL


Por favor, tome nota de las actualizaciones al final de este post.

Actualización: He creado un proyecto público en GitHub para esta biblioteca!


Me gustaría tener una sola plantilla que de una vez por todas se encargue de la impresión bonita de todos los contenedores STL a través de operator<<. En pseudo código, estoy buscando algo como esto:

template<container C, class T, String delim = ", ", String open = "[", String close = "]">
std::ostream & operator<<(std::ostream & o, const C<T> & x)
{
    o << open;
    // for (typename C::const_iterator i = x.begin(); i != x.end(); i++) /* Old-school */
    for (auto i = x.begin(); i != x.end(); i++)
    {
        if (i != x.begin()) o << delim;
        o << *i;
    }
    o << close;
    return o;
}

Ahora he visto un montón de magia de plantilla aquí para que nunca pensé posible, así que me pregunto si cualquiera puede sugerir algo que coincida con todos los contenedores C. Tal vez algo rasgo-ish que puede averiguar si algo tiene el iterador necesario?

Muchas gracias!


Actualización (y solución)

Después de plantear este problema de nuevo en Canal 9, recibí una respuesta fantástica de Sven Groot, que, combinado con un poco de tipo SFINAE traiting, parece resolver el problema de una manera completamente general y nestable. Los delimitadores pueden ser especializado individualmente, se incluye un ejemplo de especialización para std::set, así como un ejemplo de uso de delimitadores personalizados.

El ayudante "wrap_array()" se puede usar para imprimir matrices C raw. Actualización: Los pares y las tuplas están disponibles para imprimir; los delimitadores predeterminados son corchetes redondos.

El rasgo de tipo enable-if requiere C++0x, pero con algunas modificaciones debería ser posible hacer una versión de C++98 de esto. Las tuplas requieren plantillas variádicas, por lo tanto C++0x.

Le he pedido a Sven que publique la solución aquí para que pueda aceptarla, pero mientras tanto me gustaría publicar el código yo mismo como referencia. (Actualización: Sven ahora ha publicado su código a continuación, que hice la respuesta aceptada. Mi propio código utiliza rasgos de tipo de contenedor, que funcionan para mí, pero pueden causar un comportamiento inesperado con clases que no son contenedores y que proporcionan iteradores.)

Header (prettyprint.h):

#ifndef H_PRETTY_PRINT
#define H_PRETTY_PRINT


#include <type_traits>
#include <iostream>
#include <utility>
#include <tuple>


namespace std
{
    // Pre-declarations of container types so we don't actually have to include the relevant headers if not needed, speeding up compilation time.
    template<typename T, typename TTraits, typename TAllocator> class set;
}

namespace pretty_print
{

    // SFINAE type trait to detect a container based on whether T::const_iterator exists.
    // (Improvement idea: check also if begin()/end() exist.)

    template<typename T>
    struct is_container_helper
    {
    private:
        template<typename C> static char test(typename C::const_iterator*);
        template<typename C> static int  test(...);
    public:
        static const bool value = sizeof(test<T>(0)) == sizeof(char);
    };


    // Basic is_container template; specialize to derive from std::true_type for all desired container types

    template<typename T> struct is_container : public ::std::integral_constant<bool, is_container_helper<T>::value> { };


    // Holds the delimiter values for a specific character type

    template<typename TChar>
    struct delimiters_values
    {
        typedef TChar char_type;
        const TChar * prefix;
        const TChar * delimiter;
        const TChar * postfix;
    };


    // Defines the delimiter values for a specific container and character type

    template<typename T, typename TChar>
    struct delimiters
    {
        typedef delimiters_values<TChar> type;
        static const type values; 
    };


    // Default delimiters

    template<typename T> struct delimiters<T, char> { static const delimiters_values<char> values; };
    template<typename T> const delimiters_values<char> delimiters<T, char>::values = { "[", ", ", "]" };
    template<typename T> struct delimiters<T, wchar_t> { static const delimiters_values<wchar_t> values; };
    template<typename T> const delimiters_values<wchar_t> delimiters<T, wchar_t>::values = { L"[", L", ", L"]" };


    // Delimiters for set

    template<typename T, typename TTraits, typename TAllocator> struct delimiters< ::std::set<T, TTraits, TAllocator>, char> { static const delimiters_values<char> values; };
    template<typename T, typename TTraits, typename TAllocator> const delimiters_values<char> delimiters< ::std::set<T, TTraits, TAllocator>, char>::values = { "{", ", ", "}" };
    template<typename T, typename TTraits, typename TAllocator> struct delimiters< ::std::set<T, TTraits, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
    template<typename T, typename TTraits, typename TAllocator> const delimiters_values<wchar_t> delimiters< ::std::set<T, TTraits, TAllocator>, wchar_t>::values = { L"{", L", ", L"}" };


    // Delimiters for pair (reused for tuple, see below)

    template<typename T1, typename T2> struct delimiters< ::std::pair<T1, T2>, char> { static const delimiters_values<char> values; };
    template<typename T1, typename T2> const delimiters_values<char> delimiters< ::std::pair<T1, T2>, char>::values = { "(", ", ", ")" };
    template<typename T1, typename T2> struct delimiters< ::std::pair<T1, T2>, wchar_t> { static const delimiters_values<wchar_t> values; };
    template<typename T1, typename T2> const delimiters_values<wchar_t> delimiters< ::std::pair<T1, T2>, wchar_t>::values = { L"(", L", ", L")" };


    // Functor to print containers. You can use this directly if you want to specificy a non-default delimiters type.

    template<typename T, typename TChar = char, typename TCharTraits = ::std::char_traits<TChar>, typename TDelimiters = delimiters<T, TChar>>
    struct print_container_helper
    {
        typedef TChar char_type;
        typedef TDelimiters delimiters_type;
        typedef std::basic_ostream<TChar, TCharTraits> & ostream_type;

        print_container_helper(const T & container)
        : _container(container)
        {
        }

        inline void operator()(ostream_type & stream) const
        {
            if (delimiters_type::values.prefix != NULL)
                stream << delimiters_type::values.prefix;

            for (typename T::const_iterator beg = _container.begin(), end = _container.end(), it = beg; it != end; ++it)
            {
                if (it != beg && delimiters_type::values.delimiter != NULL)
                    stream << delimiters_type::values.delimiter;

                stream << *it;
            }

            if (delimiters_type::values.postfix != NULL)
                stream << delimiters_type::values.postfix;
        }

    private:
        const T & _container;
    };


    // Type-erasing helper class for easy use of custom delimiters.
    // Requires TCharTraits = std::char_traits<TChar> and TChar = char or wchar_t, and MyDelims needs to be defined for TChar.
    // Usage: "cout << pretty_print::custom_delims<MyDelims>(x)".

    struct custom_delims_base
    {
        virtual ~custom_delims_base() { }
        virtual ::std::ostream & stream(::std::ostream &) = 0;
        virtual ::std::wostream & stream(::std::wostream &) = 0;
    };

    template <typename T, typename Delims>
    struct custom_delims_wrapper : public custom_delims_base
    {
        custom_delims_wrapper(const T & t) : t(t) { }

        ::std::ostream & stream(::std::ostream & stream)
        {
          return stream << ::pretty_print::print_container_helper<T, char, ::std::char_traits<char>, Delims>(t);
        }
        ::std::wostream & stream(::std::wostream & stream)
        {
          return stream << ::pretty_print::print_container_helper<T, wchar_t, ::std::char_traits<wchar_t>, Delims>(t);
        }

    private:
        const T & t;
    };

    template <typename Delims>
    struct custom_delims
    {
        template <typename Container> custom_delims(const Container & c) : base(new custom_delims_wrapper<Container, Delims>(c)) { }
        ~custom_delims() { delete base; }
        custom_delims_base * base;
    };

} // namespace pretty_print


template <typename TChar, typename TCharTraits, typename Delims>
inline std::basic_ostream<TChar, TCharTraits> & operator<<(std::basic_ostream<TChar, TCharTraits> & stream, const pretty_print::custom_delims<Delims> & p)
{
    return p.base->stream(stream);
}


// Template aliases for char and wchar_t delimiters
// Enable these if you have compiler support
//
// Implement as "template<T, C, A> const sdelims::type sdelims<std::set<T,C,A>>::values = { ... }."

//template<typename T> using pp_sdelims = pretty_print::delimiters<T, char>;
//template<typename T> using pp_wsdelims = pretty_print::delimiters<T, wchar_t>;


namespace std
{
    // Prints a print_container_helper to the specified stream.

    template<typename T, typename TChar, typename TCharTraits, typename TDelimiters>
    inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream,
                                                          const ::pretty_print::print_container_helper<T, TChar, TCharTraits, TDelimiters> & helper)
    {
        helper(stream);
        return stream;
    }

    // Prints a container to the stream using default delimiters

    template<typename T, typename TChar, typename TCharTraits>
    inline typename enable_if< ::pretty_print::is_container<T>::value, basic_ostream<TChar, TCharTraits>&>::type
    operator<<(basic_ostream<TChar, TCharTraits> & stream, const T & container)
    {
        return stream << ::pretty_print::print_container_helper<T, TChar, TCharTraits>(container);
    }

    // Prints a pair to the stream using delimiters from delimiters<std::pair<T1, T2>>.
    template<typename T1, typename T2, typename TChar, typename TCharTraits>
    inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream, const pair<T1, T2> & value)
    {
        if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.prefix != NULL)
            stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.prefix;

        stream << value.first;

        if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.delimiter != NULL)
            stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.delimiter;

        stream << value.second;

        if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.postfix != NULL)
            stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.postfix;

        return stream;
    }
} // namespace std

// Prints a tuple to the stream using delimiters from delimiters<std::pair<tuple_dummy_t, tuple_dummy_t>>.

namespace pretty_print
{
    struct tuple_dummy_t { }; // Just if you want special delimiters for tuples.

    typedef std::pair<tuple_dummy_t, tuple_dummy_t> tuple_dummy_pair;

    template<typename Tuple, size_t N, typename TChar, typename TCharTraits>
    struct pretty_tuple_helper
    {
        static inline void print(::std::basic_ostream<TChar, TCharTraits> & stream, const Tuple & value)
        {
            pretty_tuple_helper<Tuple, N - 1, TChar, TCharTraits>::print(stream, value);

            if (delimiters<tuple_dummy_pair, TChar>::values.delimiter != NULL)
                stream << delimiters<tuple_dummy_pair, TChar>::values.delimiter;

            stream << std::get<N - 1>(value);
        }
    };

    template<typename Tuple, typename TChar, typename TCharTraits>
    struct pretty_tuple_helper<Tuple, 1, TChar, TCharTraits>
    {
        static inline void print(::std::basic_ostream<TChar, TCharTraits> & stream, const Tuple & value) { stream << ::std::get<0>(value); }
    };
} // namespace pretty_print


namespace std
{
    template<typename TChar, typename TCharTraits, typename ...Args>
    inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream, const tuple<Args...> & value)
    {
        if (::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.prefix != NULL)
            stream << ::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.prefix;

        ::pretty_print::pretty_tuple_helper<const tuple<Args...> &, sizeof...(Args), TChar, TCharTraits>::print(stream, value);

        if (::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.postfix != NULL)
            stream << ::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.postfix;

        return stream;
    }
} // namespace std


// A wrapper for raw C-style arrays. Usage: int arr[] = { 1, 2, 4, 8, 16 };  std::cout << wrap_array(arr) << ...

namespace pretty_print
{
    template <typename T, size_t N>
    struct array_wrapper
    {
        typedef const T * const_iterator;
        typedef T value_type;

        array_wrapper(const T (& a)[N]) : _array(a) { }
        inline const_iterator begin() const { return _array; }
        inline const_iterator end() const { return _array + N; }

    private:
        const T * const _array;
    };
} // namespace pretty_print

template <typename T, size_t N>
inline pretty_print::array_wrapper<T, N> pretty_print_array(const T (& a)[N])
{
    return pretty_print::array_wrapper<T, N>(a);
}


#endif

Uso ejemplo:

#include <iostream>
#include <vector>
#include <unordered_map>
#include <map>
#include <set>
#include <array>
#include <tuple>
#include <utility>
#include <string>

#include "prettyprint.h"

// Specialization for a particular container
template<> const pretty_print::delimiters_values<char> pretty_print::delimiters<std::vector<double>, char>::values = { "|| ", " : ", " ||" };

// Custom delimiters for one-off use
struct MyDel { static const delimiters_values<char> values; };
const delimiters_values<char> MyDel::values = { "<", "; ", ">" };

int main(int argc, char * argv[])
{
  std::string cs;
  std::unordered_map<int, std::string> um;
  std::map<int, std::string> om;
  std::set<std::string> ss;
  std::vector<std::string> v;
  std::vector<std::vector<std::string>> vv;
  std::vector<std::pair<int, std::string>> vp;
  std::vector<double> vd;
  v.reserve(argc - 1);
  vv.reserve(argc - 1);
  vp.reserve(argc - 1);
  vd.reserve(argc - 1);

  std::cout << "Printing pairs." << std::endl;

  while (--argc)
  {
    std::string s(argv[argc]);
    std::pair<int, std::string> p(argc, s);

    um[argc] = s;
    om[argc] = s;
    v.push_back(s);
    vv.push_back(v);
    vp.push_back(p);
    vd.push_back(1./double(i));
    ss.insert(s);
    cs += s;

    std::cout << "  " << p << std::endl;
  }

  std::array<char, 5> a{{ 'h', 'e', 'l', 'l', 'o' }};

  std::cout << "Vector: " << v << std::endl
            << "Incremental vector: " << vv << std::endl
            << "Another vector: " << vd << std::endl
            << "Pairs: " << vp << std::endl
            << "Set: " << ss << std::endl
            << "OMap: " << om << std::endl
            << "UMap: " << um << std::endl
            << "String: " << cs << std::endl
            << "Array: " << a << std::endl
  ;

  // Using custom delimiters manually:
  std::cout << pretty_print::print_container_helper<std::vector<std::string>, char, std::char_traits<char>, MyDel>(v) << std::endl;

  // Using custom delimiters with the type-erasing helper class
  std::cout << pretty_print::custom_delims<MyDel>(v) << std::endl;

  // Pairs and tuples and arrays:
  auto a1 = std::make_pair(std::string("Jello"), 9);
  auto a2 = std::make_tuple(1729);
  auto a3 = std::make_tuple("Qrgh", a1, 11);
  auto a4 = std::make_tuple(1729, 2875, std::pair<double, std::string>(1.5, "meow"));
  int arr[] = { 1, 4, 9, 16 };

  std::cout << "C array: " << wrap_array(arr) << std::endl
            << "Pair: " << a1 << std::endl
            << "1-tuple: " << a2 << std::endl
            << "n-tuple: " << a3 << std::endl
            << "n-tuple: " << a4 << std::endl
  ;
}

Otras ideas para mejorar:

  • Implementar la salida para std::tuple<...> de la misma manera que lo tenemos para std::pair<S,T>. Actualización: Esta es ahora una pregunta separada sobre SO! Upupdate: Esto ya se ha implementado, gracias a Xeo!
  • Agregue espacios de nombres para que las clases auxiliares no se filtren en el espacio de nombres global. Hecho
  • Añadir alias de plantilla (o algo similar) para facilitar la creación de clases delimitadoras personalizadas, o tal vez macros preprocesador?

actualizaciones Recientes:

  • Eliminé el iterador de salida personalizado en favor de un bucle for simple en la función de impresión.
  • Todos los detalles de la implementación están ahora en el espacio de nombres pretty_print. Solo los operadores de flujo global y la envoltura pretty_print_array están en el espacio de nombres global.
  • Se corrigió el espacio de nombres para que operator<< ahora esté correctamente en std.

Notas:

  • Eliminar el iterador de salida significa que no hay forma de usar std::copy() para obtener una impresión bonita. Podría reinstalar el iterador bonito si esta es una característica deseada, pero el código de Sven a continuación tiene la implementación.
  • Fue una decisión de diseño consciente hacer que los delimitadores compile constantes en tiempo en lugar de constantes de objeto. Eso significa que no puede suministrar delimitadores dinámicamente en tiempo de ejecución, pero también significa que hay sin gastos generales innecesarios. Dennis Zickefoose ha propuesto una configuración delimitadora basada en objetos en un comentario al código de Sven a continuación. Si se desea, esto podría implementarse como una característica alternativa.
  • Actualmente no es obvio cómo personalizar delimitadores de contenedores anidados.
  • Tenga en cuenta que el propósito de esta biblioteca es permitir que quick instalaciones de impresión de contenedores que requieren cero codificación de su parte. No es un formato de uso múltiple biblioteca, sino más bien una herramienta de desarrollo para aliviar la necesidad de escribir código de placa de caldera para la inspección de contenedores.

¡Gracias a todos los que contribuyeron!


Nota: Si está buscando una forma rápida de implementar delimitadores personalizados, aquí hay una forma de usar el tipo borrado. Asumimos que ya has construido una clase delimitadora, digamos MyDel, así:

struct MyDel { static const pretty_print::delimiters_values<char> values; };
const pretty_print::delimiters_values<char> MyDel::values = { "<", "; ", ">" };

Ahora queremos poder escribir std::cout << MyPrinter(v) << std::endl; para algún contenedor v usando esos delimitadores. MyPrinter será una clase de borrado de tipos, así:

struct wrapper_base
{
  virtual ~wrapper_base() { }
  virtual std::ostream & stream(std::ostream & o) = 0;
};

template <typename T, typename Delims>
struct wrapper : public wrapper_base
{
  wrapper(const T & t) : t(t) { }
  std::ostream & stream(std::ostream & o)
  {
    return o << pretty_print::print_container_helper<T, char, std::char_traits<char>, Delims>(t);
  }
private:
  const T & t;
};

template <typename Delims>
struct MyPrinter
{
  template <typename Container> MyPrinter(const Container & c) : base(new wrapper<Container, Delims>(c)) { }
  ~MyPrinter() { delete base; }
  wrapper_base * base;
};

template <typename Delims>
std::ostream & operator<<(std::ostream & o, const MyPrinter<Delims> & p) { return p.base->stream(o); }
Author: Community, 2011-01-31

7 answers

Esta solución se inspiró en la solución de Marcelo, con algunos cambios:

#include <iostream>
#include <iterator>
#include <type_traits>
#include <vector>
#include <algorithm>

// This works similar to ostream_iterator, but doesn't print a delimiter after the final item
template<typename T, typename TChar = char, typename TCharTraits = std::char_traits<TChar> >
class pretty_ostream_iterator : public std::iterator<std::output_iterator_tag, void, void, void, void>
{
public:
    typedef TChar char_type;
    typedef TCharTraits traits_type;
    typedef std::basic_ostream<TChar, TCharTraits> ostream_type;

    pretty_ostream_iterator(ostream_type &stream, const char_type *delim = NULL)
        : _stream(&stream), _delim(delim), _insertDelim(false)
    {
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator=(const T &value)
    {
        if( _delim != NULL )
        {
            // Don't insert a delimiter if this is the first time the function is called
            if( _insertDelim )
                (*_stream) << _delim;
            else
                _insertDelim = true;
        }
        (*_stream) << value;
        return *this;
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator*()
    {
        return *this;
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator++()
    {
        return *this;
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator++(int)
    {
        return *this;
    }
private:
    ostream_type *_stream;
    const char_type *_delim;
    bool _insertDelim;
};

#if _MSC_VER >= 1400

// Declare pretty_ostream_iterator as checked
template<typename T, typename TChar, typename TCharTraits>
struct std::_Is_checked_helper<pretty_ostream_iterator<T, TChar, TCharTraits> > : public std::tr1::true_type
{
};

#endif // _MSC_VER >= 1400

namespace std
{
    // Pre-declarations of container types so we don't actually have to include the relevant headers if not needed, speeding up compilation time.
    // These aren't necessary if you do actually include the headers.
    template<typename T, typename TAllocator> class vector;
    template<typename T, typename TAllocator> class list;
    template<typename T, typename TTraits, typename TAllocator> class set;
    template<typename TKey, typename TValue, typename TTraits, typename TAllocator> class map;
}

// Basic is_container template; specialize to derive from std::true_type for all desired container types
template<typename T> struct is_container : public std::false_type { };

// Mark vector as a container
template<typename T, typename TAllocator> struct is_container<std::vector<T, TAllocator> > : public std::true_type { };

// Mark list as a container
template<typename T, typename TAllocator> struct is_container<std::list<T, TAllocator> > : public std::true_type { };

// Mark set as a container
template<typename T, typename TTraits, typename TAllocator> struct is_container<std::set<T, TTraits, TAllocator> > : public std::true_type { };

// Mark map as a container
template<typename TKey, typename TValue, typename TTraits, typename TAllocator> struct is_container<std::map<TKey, TValue, TTraits, TAllocator> > : public std::true_type { };

// Holds the delimiter values for a specific character type
template<typename TChar>
struct delimiters_values
{
    typedef TChar char_type;
    const TChar *prefix;
    const TChar *delimiter;
    const TChar *postfix;
};

// Defines the delimiter values for a specific container and character type
template<typename T, typename TChar>
struct delimiters
{
    static const delimiters_values<TChar> values; 
};

// Default delimiters
template<typename T> struct delimiters<T, char> { static const delimiters_values<char> values; };
template<typename T> const delimiters_values<char> delimiters<T, char>::values = { "{ ", ", ", " }" };
template<typename T> struct delimiters<T, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T> const delimiters_values<wchar_t> delimiters<T, wchar_t>::values = { L"{ ", L", ", L" }" };

// Delimiters for set
template<typename T, typename TTraits, typename TAllocator> struct delimiters<std::set<T, TTraits, TAllocator>, char> { static const delimiters_values<char> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<char> delimiters<std::set<T, TTraits, TAllocator>, char>::values = { "[ ", ", ", " ]" };
template<typename T, typename TTraits, typename TAllocator> struct delimiters<std::set<T, TTraits, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<wchar_t> delimiters<std::set<T, TTraits, TAllocator>, wchar_t>::values = { L"[ ", L", ", L" ]" };

// Delimiters for pair
template<typename T1, typename T2> struct delimiters<std::pair<T1, T2>, char> { static const delimiters_values<char> values; };
template<typename T1, typename T2> const delimiters_values<char> delimiters<std::pair<T1, T2>, char>::values = { "(", ", ", ")" };
template<typename T1, typename T2> struct delimiters<std::pair<T1, T2>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T1, typename T2> const delimiters_values<wchar_t> delimiters<std::pair<T1, T2>, wchar_t>::values = { L"(", L", ", L")" };

// Functor to print containers. You can use this directly if you want to specificy a non-default delimiters type.
template<typename T, typename TChar = char, typename TCharTraits = std::char_traits<TChar>, typename TDelimiters = delimiters<T, TChar> >
struct print_container_helper
{
    typedef TChar char_type;
    typedef TDelimiters delimiters_type;
    typedef std::basic_ostream<TChar, TCharTraits>& ostream_type;

    print_container_helper(const T &container)
        : _container(&container)
    {
    }

    void operator()(ostream_type &stream) const
    {
        if( delimiters_type::values.prefix != NULL )
            stream << delimiters_type::values.prefix;
        std::copy(_container->begin(), _container->end(), pretty_ostream_iterator<typename T::value_type, TChar, TCharTraits>(stream, delimiters_type::values.delimiter));
        if( delimiters_type::values.postfix != NULL )
            stream << delimiters_type::values.postfix;
    }
private:
    const T *_container;
};

// Prints a print_container_helper to the specified stream.
template<typename T, typename TChar, typename TCharTraits, typename TDelimiters>
std::basic_ostream<TChar, TCharTraits>& operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const print_container_helper<T, TChar, TDelimiters> &helper)
{
    helper(stream);
    return stream;
}

// Prints a container to the stream using default delimiters
template<typename T, typename TChar, typename TCharTraits>
typename std::enable_if<is_container<T>::value, std::basic_ostream<TChar, TCharTraits>&>::type
    operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const T &container)
{
    stream << print_container_helper<T, TChar, TCharTraits>(container);
    return stream;
}

// Prints a pair to the stream using delimiters from delimiters<std::pair<T1, T2>>.
template<typename T1, typename T2, typename TChar, typename TCharTraits>
std::basic_ostream<TChar, TCharTraits>& operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const std::pair<T1, T2> &value)
{
    if( delimiters<std::pair<T1, T2>, TChar>::values.prefix != NULL )
        stream << delimiters<std::pair<T1, T2>, TChar>::values.prefix;

    stream << value.first;

    if( delimiters<std::pair<T1, T2>, TChar>::values.delimiter != NULL )
        stream << delimiters<std::pair<T1, T2>, TChar>::values.delimiter;

    stream << value.second;

    if( delimiters<std::pair<T1, T2>, TChar>::values.postfix != NULL )
        stream << delimiters<std::pair<T1, T2>, TChar>::values.postfix;
    return stream;    
}

// Used by the sample below to generate some values
struct fibonacci
{
    fibonacci() : f1(0), f2(1) { }
    int operator()()
    {
        int r = f1 + f2;
        f1 = f2;
        f2 = r;
        return f1;
    }
private:
    int f1;
    int f2;
};

int main()
{
    std::vector<int> v;
    std::generate_n(std::back_inserter(v), 10, fibonacci());

    std::cout << v << std::endl;

    // Example of using pretty_ostream_iterator directly
    std::generate_n(pretty_ostream_iterator<int>(std::cout, ";"), 20, fibonacci());
    std::cout << std::endl;
}

Al igual que la versión de Marcelo, utiliza un rasgo de tipo is_container que debe ser especializado para todos los contenedores que se van a soportar. Puede ser posible usar un rasgo para verificar value_type, const_iterator, begin()/end(), pero no estoy seguro de que lo recomendaría, ya que podría coincidir con cosas que coinciden con esos criterios, pero en realidad no son contenedores, como std::basic_string. También como la versión de Marcelo, utiliza plantillas que pueden ser especializado para especificar los delimitadores a utilizar.

La principal diferencia es que he construido mi versión alrededor de un pretty_ostream_iterator, que funciona de manera similar a std::ostream_iterator pero no imprime un delimitador después del último elemento. El formateo de los contenedores se realiza mediante print_container_helper, que se puede usar directamente para imprimir contenedores sin un rasgo is_container, o para especificar un tipo de delimitadores diferente.

También he definido is_container y delimitadores para que funcione para contenedores con predicados no estándar o asignadores, y tanto para char como para wchar_t. La propia función del operador

Finalmente, he usado std::enable_if, que está disponible como parte de C++0x, y funciona en Visual C++ 2010 y g++ 4.3 (necesita el indicador-std=c++0x) y versiones posteriores. De esta manera no hay dependencia de Boost.

 73
Author: Sven,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/ajaxhispano.com/template/agent.layouts/content.php on line 61
2011-06-05 04:07:35

Esto se ha editado varias veces, y hemos decidido llamar a la clase principal que envuelve una colección RangePrinter

Esto debería funcionar automáticamente con cualquier colección una vez que haya escrito el operador de una sola vez

También podría tener una función especial de "impresión" para usar en el elemento en lugar de simplemente enviarlo directamente. Un poco como los algoritmos STL le permiten pasar predicados personalizados. Con map lo usarías de esta manera, con una impresora personalizada para el par std::.

Su impresora "predeterminada" simplemente lo enviaría a la transmisión.

Ok, vamos a trabajar en una impresora personalizada. Cambiaré mi clase externa a RangePrinter. Así que tenemos 2 iteradores y algunos delimitadores, pero no hemos personalizado cómo imprimir los elementos reales.

struct DefaultPrinter
{
   template< typename T >
   std::ostream & operator()( std::ostream& os, const T& t ) const
   {
     return os << t;
   }

   // overload for std::pair
   template< typename K, typename V >
   std::ostream & operator()( std::ostream & os, std::pair<K,V> const& p)
   {
      return os << p.first << '=' << p.second;
   }
};

// some prototypes
template< typename FwdIter, typename Printer > class RangePrinter;

template< typename FwdIter, typename Printer > 
  std::ostream & operator<<( std::ostream &, 
        RangePrinter<FwdIter, Printer> const& );

template< typename FwdIter, typename Printer=DefaultPrinter >
class RangePrinter
{
    FwdIter begin;
    FwdIter end;
    std::string delim;
    std::string open;
    std::string close;
    Printer printer;

    friend std::ostream& operator<< <>( std::ostream&, 
         RangePrinter<FwdIter,Printer> const& );

public:
    RangePrinter( FwdIter b, FwdIter e, Printer p,
         std::string const& d, std::string const & o, std::string const& c )
      : begin( b ), end( e ), printer( p ), open( o ), close( c )
    {
    } 

     // with no "printer" variable
    RangePrinter( FwdIter b, FwdIter e,
         std::string const& d, std::string const & o, std::string const& c )
      : begin( b ), end( e ), open( o ), close( c )
    {
    } 

};


template<typename FwdIter, typename Printer>
std::ostream& operator<<( std::ostream& os, 
          RangePrinter<FwdIter, Printer> const& range )
{
    const Printer & printer = range.printer;

    os << range.open;
    FwdIter begin = range.begin, end = range.end;

    // print the first item
    if (begin == end) 
    { 
      return os << range.close; 
    }

    printer( os, *begin );

    // print the rest with delim as a prefix
    for( ++begin; begin != end; ++begin )
    {
       os << range.delim;
       printer( os, *begin );
    }
    return os << range.close;
}

Ahora, por defecto, funcionará para mapas siempre y cuando los tipos de clave y valor sean imprimibles y pueda coloque su propia impresora de elementos especiales para cuando no lo estén (como puede con cualquier otro tipo), o si no desea = como delimitador.

Estoy moviendo la función libre para crear estos al final ahora:

Una función libre (versión iteradora) se vería como algo así e incluso podría tener valores predeterminados:

template<typename Collection>
RangePrinter<typename Collection::const_iterator> rangePrinter
    ( const Collection& coll, const char * delim=",", 
       const char * open="[", const char * close="]")
{
   return RangePrinter< typename Collection::const_iterator >
     ( coll.begin(), coll.end(), delim, open, close );
}

Luego podría usarlo para std:: establecido por

 std::cout << outputFormatter( mySet );

También puede escribir una versión de función libre que tome una impresora personalizada y otras que tomen dos iteradores. En en cualquier caso, resolverán los parámetros de la plantilla por ti, y podrás pasarlos como temporales.

 20
Author: CashCow,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/ajaxhispano.com/template/agent.layouts/content.php on line 61
2011-02-01 09:12:00

Aquí hay una biblioteca de trabajo, presentada como un programa de trabajo completo, que acabo de hackear juntos:

#include <set>
#include <vector>
#include <iostream>

#include <boost/utility/enable_if.hpp>

// Default delimiters
template <class C> struct Delims { static const char *delim[3]; };
template <class C> const char *Delims<C>::delim[3]={"[", ", ", "]"};
// Special delimiters for sets.                                                                                                             
template <typename T> struct Delims< std::set<T> > { static const char *delim[3]; };
template <typename T> const char *Delims< std::set<T> >::delim[3]={"{", ", ", "}"};

template <class C> struct IsContainer { enum { value = false }; };
template <typename T> struct IsContainer< std::vector<T> > { enum { value = true }; };
template <typename T> struct IsContainer< std::set<T>    > { enum { value = true }; };

template <class C>
typename boost::enable_if<IsContainer<C>, std::ostream&>::type
operator<<(std::ostream & o, const C & x)
{
  o << Delims<C>::delim[0];
  for (typename C::const_iterator i = x.begin(); i != x.end(); ++i)
    {
      if (i != x.begin()) o << Delims<C>::delim[1];
      o << *i;
    }
  o << Delims<C>::delim[2];
  return o;
}

template <typename T> struct IsChar { enum { value = false }; };
template <> struct IsChar<char> { enum { value = true }; };

template <typename T, int N>
typename boost::disable_if<IsChar<T>, std::ostream&>::type
operator<<(std::ostream & o, const T (&x)[N])
{
  o << "[";
  for (int i = 0; i != N; ++i)
    {
      if (i) o << ",";
      o << x[i];
    }
  o << "]";
  return o;
}

int main()
{
  std::vector<int> i;
  i.push_back(23);
  i.push_back(34);

  std::set<std::string> j;
  j.insert("hello");
  j.insert("world");

  double k[] = { 1.1, 2.2, M_PI, -1.0/123.0 };

  std::cout << i << "\n" << j << "\n" << k << "\n";
}

Actualmente solo funciona con vector y set, pero se puede hacer que funcione con la mayoría de los contenedores, simplemente expandiendo las especializaciones IsContainer. No he pensado mucho acerca de si este código es mínimo, pero no puedo pensar inmediatamente en nada que pueda despojar como redundante.

EDIT: Solo por diversión, incluí una versión que maneja matrices. Tuve que excluir char arrays para evitar más ambigüedades; todavía podría tener problemas con wchar_t[].

 14
Author: Marcelo Cantos,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/ajaxhispano.com/template/agent.layouts/content.php on line 61
2011-01-31 13:18:41

El código resultó ser útil en varias ocasiones ahora y siento el gasto para entrar en la personalización como el uso es bastante bajo. Por lo tanto, decidí publicarlo bajo la licencia MIT y proporcionar un repositorio de GitHub donde se puede descargar el encabezado y un pequeño archivo de ejemplo.

Http://djmuw.github.io/prettycc

0. Prefacio y redacción

A 'decoration' en términos de esta respuesta es un conjunto de cadena de prefijo, delimiter-string, y un postfix-string. Donde la cadena de prefijo se inserta en una secuencia antes y la cadena de postfijo después de los valores de un contenedor (ver 2. Contenedores objetivo). La cadena delimitadora se inserta entre los valores del contenedor respectivo.

Nota: En realidad, esta respuesta no aborda la pregunta al 100% ya que la decoración no es estrictamente constante de tiempo compilada porque se requieren comprobaciones de tiempo de ejecución para verificar si se ha aplicado una decoración personalizada a la corriente actual. Sin embargo, creo que tiene algunas características decentes.

Nota 2: Puede tener errores menores ya que aún no está bien probado.

1. Idea general / uso

Cero código adicional requerido para el uso

Debe mantenerse tan fácil como{[59]]}

#include <vector>
#include "pretty.h"

int main()
{
  std::cout << std::vector<int>{1,2,3,4,5}; // prints 1, 2, 3, 4, 5
  return 0;
}

Fácil personalización ...

... con respecto a un objeto de flujo específico

#include <vector>
#include "pretty.h"

int main()
{
  // set decoration for std::vector<int> for cout object
  std::cout << pretty::decoration<std::vector<int>>("(", ",", ")");
  std::cout << std::vector<int>{1,2,3,4,5}; // prints (1,2,3,4,5)
  return 0;
}

O con respecto a todas las corrientes:

#include <vector>
#include "pretty.h"

// set decoration for std::vector<int> for all ostream objects
PRETTY_DEFAULT_DECORATION(std::vector<int>, "{", ", ", "}")

int main()
{
  std::cout << std::vector<int>{1,2,3,4,5}; // prints {1, 2, 3, 4, 5}
  std::cout << pretty::decoration<std::vector<int>>("(", ",", ")");
  std::cout << std::vector<int>{1,2,3,4,5}; // prints (1,2,3,4,5)
  return 0;
}

En bruto descripción

  • El código incluye una plantilla de clase que proporciona una decoración predeterminada para cualquier tipo
  • que puede ser especializada para cambiar la decoración por defecto para(a) cierto tipo (s) y es
  • utilizando el almacenamiento privado proporcionado por ios_base utilizando xalloc/pword para guardar un puntero a un objeto pretty::decor que decora específicamente un tipo determinado en una secuencia determinada.

Si no se ha configurado explícitamente ningún objeto pretty::decor<T> para esta secuencia, se llama a pretty::defaulted<T, charT, chartraitT>::decoration() para obtener la decoración predeterminada para el tipo dado. La clase pretty::defaulted debe especializarse para personalizar las decoraciones predeterminadas.

2. Objetos / contenedores de destino

Los objetos de destino obj para la 'bonita decoración' de este código son objetos que tienen

  • overloads std::begin and std::end defined (includes C-Style arrays),
  • teniendo begin(obj) y end(obj) disponible vía ADL,
  • son de tipo std::tuple
  • o de tipo std::pair.

El código incluye un rasgo para la identificación de clases con entidades de rango (begin/end). (No hay ninguna comprobación incluida, si begin(obj) == end(obj) es una expresión válida, sin embargo.)

El código proporciona operator<<s en el espacio de nombres global que solo se aplican a las clases que no tienen una versión más especializada de operator<< disponible. Por lo tanto, por ejemplo std::string no se imprime usando el operador en este código aunque tenga un valor válido begin/end par.

3. Utilización y personalización

Las decoraciones se pueden imponer por separado para cada tipo (excepto diferentes tuple s) y flujo (no tipo de flujo!). (I. e. a std::vector<int> puede tener diferentes decoraciones para diferentes objetos de flujo.)

A) Decoración por defecto

El prefijo predeterminado es "" (nada) al igual que el postfijo predeterminado, mientras que el delimitador predeterminado es ", " (coma+espacio).

B) Decoración predeterminada personalizada de un tipo especializando la plantilla de clase pretty::defaulted

El struct defaulted tiene una función miembro estática decoration() que devuelve un objeto decor que incluye los valores predeterminados para el tipo dado.

Ejemplo usando una matriz:

Personalizar la impresión de matriz predeterminada:

namespace pretty
{
  template<class T, std::size_t N>
  struct defaulted<T[N]>
  {
    static decor<T[N]> decoration()
    {
      return{ { "(" }, { ":" }, { ")" } };
    }
  };
}

Imprimir una matriz arry:

float e[5] = { 3.4f, 4.3f, 5.2f, 1.1f, 22.2f };
std::cout << e << '\n'; // prints (3.4:4.3:5.2:1.1:22.2)

Usando la macro PRETTY_DEFAULT_DECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) para char flujos

La macro se expande a

namespace pretty { 
  template< __VA_ARGS__ >
  struct defaulted< TYPE > {
    static decor< TYPE > decoration() {
      return { PREFIX, DELIM, POSTFIX };
    } 
  }; 
} 

Permitiendo que la especialización parcial anterior se reescriba a

PRETTY_DEFAULT_DECORATION(T[N], "", ";", "", class T, std::size_t N)

O insertar una especialización completa como

PRETTY_DEFAULT_DECORATION(std::vector<int>, "(", ", ", ")")

Se incluye otra macro para wchar_t flujos: PRETTY_DEFAULT_WDECORATION.

C) Imponer la decoración en las corrientes

La función pretty::decoration se utiliza para imponer una decoración en un flujo determinado. Hay sobrecargas tomando cualquiera - un argumento de cadena es el delimitador (adoptando prefijo y postfijo de la clase predeterminada) - o tres argumentos de cadena que ensamblan la decoración completa

Decoración completa para un tipo y una secuencia dados

float e[3] = { 3.4f, 4.3f, 5.2f };
std::stringstream u;
// add { ; } decoration to u
u << pretty::decoration<float[3]>("{", "; ", "}");

// use { ; } decoration
u << e << '\n'; // prints {3.4; 4.3; 5.2}

// uses decoration returned by defaulted<float[3]>::decoration()
std::cout << e; // prints 3.4, 4.3, 5.2

Personalización de delimitador para una corriente dada

PRETTY_DEFAULT_DECORATION(float[3], "{{{", ",", "}}}")

std::stringstream v;
v << e; // prints {{{3.4,4.3,5.2}}}

v << pretty::decoration<float[3]>(":");
v << e; // prints {{{3.4:4.3:5.2}}}

v << pretty::decoration<float[3]>("((", "=", "))");
v << e; // prints ((3.4=4.3=5.2))

4. Manipulación especial de std::tuple

En lugar de permitir una especialización para cada tipo de tupla posible, este código aplica cualquier decoración disponible para std::tuple<void*> a todo tipo de std::tuple<...>s.

5. Eliminar la decoración personalizada de la corriente

Para volver a la decoración predeterminada para un tipo dado, use la plantilla de función pretty::clear en la secuencia s.

s << pretty::clear<std::vector<int>>();

5. Otros ejemplos

Imprimir "matrix-like" con delimitador de nueva línea

std::vector<std::vector<int>> m{ {1,2,3}, {4,5,6}, {7,8,9} };
std::cout << pretty::decoration<std::vector<std::vector<int>>>("\n");
std::cout << m;

Impresiones

1, 2, 3
4, 5, 6
7, 8, 9

Véase en ideone/KKUebZ

6. Código

#ifndef pretty_print_0x57547_sa4884X_0_1_h_guard_
#define pretty_print_0x57547_sa4884X_0_1_h_guard_

#include <string>
#include <iostream>
#include <type_traits>
#include <iterator>
#include <utility>

#define PRETTY_DEFAULT_DECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) \
    namespace pretty { template< __VA_ARGS__ >\
    struct defaulted< TYPE > {\
    static decor< TYPE > decoration(){\
      return { PREFIX, DELIM, POSTFIX };\
    } /*decoration*/ }; /*defaulted*/} /*pretty*/

#define PRETTY_DEFAULT_WDECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) \
    namespace pretty { template< __VA_ARGS__ >\
    struct defaulted< TYPE, wchar_t, std::char_traits<wchar_t> > {\
    static decor< TYPE, wchar_t, std::char_traits<wchar_t> > decoration(){\
      return { PREFIX, DELIM, POSTFIX };\
    } /*decoration*/ }; /*defaulted*/} /*pretty*/

namespace pretty
{

  namespace detail
  {
    // drag in begin and end overloads
    using std::begin;
    using std::end;
    // helper template
    template <int I> using _ol = std::integral_constant<int, I>*;
    // SFINAE check whether T is a range with begin/end
    template<class T>
    class is_range
    {
      // helper function declarations using expression sfinae
      template <class U, _ol<0> = nullptr>
      static std::false_type b(...);
      template <class U, _ol<1> = nullptr>
      static auto b(U &v) -> decltype(begin(v), std::true_type());
      template <class U, _ol<0> = nullptr>
      static std::false_type e(...);
      template <class U, _ol<1> = nullptr>
      static auto e(U &v) -> decltype(end(v), std::true_type());
      // return types
      using b_return = decltype(b<T>(std::declval<T&>()));
      using e_return = decltype(e<T>(std::declval<T&>()));
    public:
      static const bool value = b_return::value && e_return::value;
    };
  }

  // holder class for data
  template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
  struct decor
  {
    static const int xindex;
    std::basic_string<CharT, TraitT> prefix, delimiter, postfix;
    decor(std::basic_string<CharT, TraitT> const & pre = "",
      std::basic_string<CharT, TraitT> const & delim = "",
      std::basic_string<CharT, TraitT> const & post = "")
      : prefix(pre), delimiter(delim), postfix(post) {}
  };

  template<class T, class charT, class traits>
  int const decor<T, charT, traits>::xindex = std::ios_base::xalloc();

  namespace detail
  {

    template<class T, class CharT, class TraitT>
    void manage_decor(std::ios_base::event evt, std::ios_base &s, int const idx)
    {
      using deco_type = decor<T, CharT, TraitT>;
      if (evt == std::ios_base::erase_event)
      { // erase deco
        void const * const p = s.pword(idx);
        if (p)
        {
          delete static_cast<deco_type const * const>(p);
          s.pword(idx) = nullptr;
        }
      }
      else if (evt == std::ios_base::copyfmt_event)
      { // copy deco
        void const * const p = s.pword(idx);
        if (p)
        {
          auto np = new deco_type{ *static_cast<deco_type const * const>(p) };
          s.pword(idx) = static_cast<void*>(np);
        }
      }
    }

    template<class T> struct clearer {};

    template<class T, class CharT, class TraitT>
    std::basic_ostream<CharT, TraitT>& operator<< (
      std::basic_ostream<CharT, TraitT> &s, clearer<T> const &)
    {
      using deco_type = decor<T, CharT, TraitT>;
      void const * const p = s.pword(deco_type::xindex);
      if (p)
      { // delete if set
        delete static_cast<deco_type const *>(p);
        s.pword(deco_type::xindex) = nullptr;
      }
      return s;
    }

    template <class CharT> 
    struct default_data { static const CharT * decor[3]; };
    template <> 
    const char * default_data<char>::decor[3] = { "", ", ", "" };
    template <> 
    const wchar_t * default_data<wchar_t>::decor[3] = { L"", L", ", L"" };

  }

  // Clear decoration for T
  template<class T>
  detail::clearer<T> clear() { return{}; }
  template<class T, class CharT, class TraitT>
  void clear(std::basic_ostream<CharT, TraitT> &s) { s << detail::clearer<T>{}; }

  // impose decoration on ostream
  template<class T, class CharT, class TraitT>
  std::basic_ostream<CharT, TraitT>& operator<<(
    std::basic_ostream<CharT, TraitT> &s, decor<T, CharT, TraitT> && h)
  {
    using deco_type = decor<T, CharT, TraitT>;
    void const * const p = s.pword(deco_type::xindex);
    // delete if already set
    if (p) delete static_cast<deco_type const *>(p);
    s.pword(deco_type::xindex) = static_cast<void *>(new deco_type{ std::move(h) });
    // check whether we alread have a callback registered
    if (s.iword(deco_type::xindex) == 0)
    { // if this is not the case register callback and set iword
      s.register_callback(detail::manage_decor<T, CharT, TraitT>, deco_type::xindex);
      s.iword(deco_type::xindex) = 1;
    }
    return s;
  }

  template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
  struct defaulted
  {
    static inline decor<T, CharT, TraitT> decoration()
    {
      return{ detail::default_data<CharT>::decor[0],
        detail::default_data<CharT>::decor[1],
        detail::default_data<CharT>::decor[2] };
    }
  };

  template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
  decor<T, CharT, TraitT> decoration(
    std::basic_string<CharT, TraitT> const & prefix,
    std::basic_string<CharT, TraitT> const & delimiter,
    std::basic_string<CharT, TraitT> const & postfix)
  {
    return{ prefix, delimiter, postfix };
  }

  template<class T, class CharT = char,
  class TraitT = std::char_traits < CharT >>
    decor<T, CharT, TraitT> decoration(
      std::basic_string<CharT, TraitT> const & delimiter)
  {
    using str_type = std::basic_string<CharT, TraitT>;
    return{ defaulted<T, CharT, TraitT>::decoration().prefix,
      delimiter, defaulted<T, CharT, TraitT>::decoration().postfix };
  }

  template<class T, class CharT = char,
  class TraitT = std::char_traits < CharT >>
    decor<T, CharT, TraitT> decoration(CharT const * const prefix,
      CharT const * const delimiter, CharT const * const postfix)
  {
    using str_type = std::basic_string<CharT, TraitT>;
    return{ str_type{ prefix }, str_type{ delimiter }, str_type{ postfix } };
  }

  template<class T, class CharT = char,
  class TraitT = std::char_traits < CharT >>
    decor<T, CharT, TraitT> decoration(CharT const * const delimiter)
  {
    using str_type = std::basic_string<CharT, TraitT>;
    return{ defaulted<T, CharT, TraitT>::decoration().prefix,
      str_type{ delimiter }, defaulted<T, CharT, TraitT>::decoration().postfix };
  }

  template<typename T, std::size_t N, std::size_t L>
  struct tuple
  {
    template<class CharT, class TraitT>
    static void print(std::basic_ostream<CharT, TraitT>& s, T const & value,
      std::basic_string<CharT, TraitT> const &delimiter)
    {
      s << std::get<N>(value) << delimiter;
      tuple<T, N + 1, L>::print(s, value, delimiter);
    }
  };

  template<typename T, std::size_t N>
  struct tuple<T, N, N>
  {
    template<class CharT, class TraitT>
    static void print(std::basic_ostream<CharT, TraitT>& s, T const & value,
      std::basic_string<CharT, TraitT> const &) {
      s << std::get<N>(value);
    }
  };

}

template<class CharT, class TraitT>
std::basic_ostream<CharT, TraitT> & operator<< (
  std::basic_ostream<CharT, TraitT> &s, std::tuple<> const & v)
{
  using deco_type = pretty::decor<std::tuple<void*>, CharT, TraitT>;
  using defaulted_type = pretty::defaulted<std::tuple<void*>, CharT, TraitT>;
  void const * const p = s.pword(deco_type::xindex);
  auto const d = static_cast<deco_type const * const>(p);
  s << (d ? d->prefix : defaulted_type::decoration().prefix);
  s << (d ? d->postfix : defaulted_type::decoration().postfix);
  return s;
}

template<class CharT, class TraitT, class ... T>
std::basic_ostream<CharT, TraitT> & operator<< (
  std::basic_ostream<CharT, TraitT> &s, std::tuple<T...> const & v)
{
  using deco_type = pretty::decor<std::tuple<void*>, CharT, TraitT>;
  using defaulted_type = pretty::defaulted<std::tuple<void*>, CharT, TraitT>;
  using pretty_tuple = pretty::tuple<std::tuple<T...>, 0U, sizeof...(T)-1U>;
  void const * const p = s.pword(deco_type::xindex);
  auto const d = static_cast<deco_type const * const>(p);
  s << (d ? d->prefix : defaulted_type::decoration().prefix);
  pretty_tuple::print(s, v, d ? d->delimiter : 
    defaulted_type::decoration().delimiter);
  s << (d ? d->postfix : defaulted_type::decoration().postfix);
  return s;
}

template<class T, class U, class CharT, class TraitT>
std::basic_ostream<CharT, TraitT> & operator<< (
  std::basic_ostream<CharT, TraitT> &s, std::pair<T, U> const & v)
{
  using deco_type = pretty::decor<std::pair<T, U>, CharT, TraitT>;
  using defaulted_type = pretty::defaulted<std::pair<T, U>, CharT, TraitT>;
  void const * const p = s.pword(deco_type::xindex);
  auto const d = static_cast<deco_type const * const>(p);
  s << (d ? d->prefix : defaulted_type::decoration().prefix);
  s << v.first;
  s << (d ? d->delimiter : defaulted_type::decoration().delimiter);
  s << v.second;
  s << (d ? d->postfix : defaulted_type::decoration().postfix);
  return s;
}


template<class T, class CharT = char,
class TraitT = std::char_traits < CharT >>
  typename std::enable_if < pretty::detail::is_range<T>::value,
  std::basic_ostream < CharT, TraitT >> ::type & operator<< (
    std::basic_ostream<CharT, TraitT> &s, T const & v)
{
  bool first(true);
  using deco_type = pretty::decor<T, CharT, TraitT>;
  using default_type = pretty::defaulted<T, CharT, TraitT>;
  void const * const p = s.pword(deco_type::xindex);
  auto d = static_cast<pretty::decor<T, CharT, TraitT> const * const>(p);
  s << (d ? d->prefix : default_type::decoration().prefix);
  for (auto const & e : v)
  { // v is range thus range based for works
    if (!first) s << (d ? d->delimiter : default_type::decoration().delimiter);
    s << e;
    first = false;
  }
  s << (d ? d->postfix : default_type::decoration().postfix);
  return s;
}

#endif // pretty_print_0x57547_sa4884X_0_1_h_guard_
 7
Author: Pixelchemist,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/ajaxhispano.com/template/agent.layouts/content.php on line 61
2018-06-22 19:44:57

Voy a agregar otra respuesta aquí, porque se me ha ocurrido un enfoque diferente al anterior, y es usar facetas locales.

Los fundamentos son aquí

Esencialmente lo que haces es:

  1. Crea una clase que deriva de std::locale::facet. La ligera desventaja es que necesitará una unidad de compilación en algún lugar para mantener su id. Vamos a llamar a MyPrettyVectorPrinter. Probablemente darle un nombre mejor, y también crear para par y asignar.
  2. En su función de flujo, marque std::has_facet< MyPrettyVectorPrinter >
  3. Si devuelve true, extráigalo con std::use_facet< MyPrettyVectorPrinter >( os.getloc() )
  4. Sus objetos de faceta tendrán valores para los delimitadores y podrá leerlos. Si la faceta no se encuentra, su función de impresión (operator<<) proporciona las predeterminadas. Nota puedes hacer lo mismo para leer un vector.

Me gusta este método porque puede usar una impresión predeterminada mientras todavía puede usar una anulación personalizada.

Las desventajas son la necesidad de un biblioteca para su faceta si se usa en varios proyectos (por lo que no puede ser solo encabezados) y también el hecho de que debe tener cuidado con el gasto de crear un nuevo objeto de configuración regional.

He escrito esto como una nueva solución en lugar de modificar mi otra porque creo que ambos enfoques pueden ser correctos y usted elige.

 5
Author: CashCow,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/ajaxhispano.com/template/agent.layouts/content.php on line 61
2013-02-13 17:55:59

Mi solución es simple.h , que forma parte del paquete scc. Todos los contenedores std, mapas, conjuntos, c-arrays son imprimibles.

 2
Author: Leonid Volnitsky,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/ajaxhispano.com/template/agent.layouts/content.php on line 61
2011-06-19 09:38:44

El objetivo aquí es usar ADL para personalizar cómo imprimimos.

Se pasa una etiqueta formatter y se anulan 4 funciones (antes, después, entre y descienden) en el espacio de nombres de la etiqueta. Esto cambia la forma en que el formateador imprime 'adornos' al iterar sobre contenedores.

Un formateador predeterminado que hace {(a->b),(c->d)} para mapas, (a,b,c) para tupleoids, "hello" para cadenas, [x,y,z] para todo lo demás incluido.

Debería "simplemente funcionar" con tipos iterables de terceros (y trátalos como"todo lo demás").

Si desea adornos personalizados para sus iterables de terceros, simplemente cree su propia etiqueta. Tomará un poco de trabajo manejar el descenso del mapa (necesita sobrecargar pretty_print_descend( your_tag para regresar pretty_print::decorator::map_magic_tag<your_tag>). Tal vez hay una forma más limpia de hacer esto, no estoy seguro.

Una pequeña biblioteca para detectar la iterabilidad y la tupla:

namespace details {
  using std::begin; using std::end;
  template<class T, class=void>
  struct is_iterable_test:std::false_type{};
  template<class T>
  struct is_iterable_test<T,
    decltype((void)(
      (void)(begin(std::declval<T>())==end(std::declval<T>()))
      , ((void)(std::next(begin(std::declval<T>()))))
      , ((void)(*begin(std::declval<T>())))
      , 1
    ))
  >:std::true_type{};
  template<class T>struct is_tupleoid:std::false_type{};
  template<class...Ts>struct is_tupleoid<std::tuple<Ts...>>:std::true_type{};
  template<class...Ts>struct is_tupleoid<std::pair<Ts...>>:std::true_type{};
  // template<class T, size_t N>struct is_tupleoid<std::array<T,N>>:std::true_type{}; // complete, but problematic
}
template<class T>struct is_iterable:details::is_iterable_test<std::decay_t<T>>{};
template<class T, std::size_t N>struct is_iterable<T(&)[N]>:std::true_type{}; // bypass decay
template<class T>struct is_tupleoid:details::is_tupleoid<std::decay_t<T>>{};

template<class T>struct is_visitable:std::integral_constant<bool, is_iterable<T>{}||is_tupleoid<T>{}> {};

Una biblioteca que nos permite visitar el contenido de un objeto de tipo iterable o tupla:

template<class C, class F>
std::enable_if_t<is_iterable<C>{}> visit_first(C&& c, F&& f) {
  using std::begin; using std::end;
  auto&& b = begin(c);
  auto&& e = end(c);
  if (b==e)
      return;
  std::forward<F>(f)(*b);
}
template<class C, class F>
std::enable_if_t<is_iterable<C>{}> visit_all_but_first(C&& c, F&& f) {
  using std::begin; using std::end;
  auto it = begin(c);
  auto&& e = end(c);
  if (it==e)
      return;
  it = std::next(it);
  for( ; it!=e; it = std::next(it) ) {
    f(*it);
  }
}

namespace details {
  template<class Tup, class F>
  void visit_first( std::index_sequence<>, Tup&&, F&& ) {}
  template<size_t... Is, class Tup, class F>
  void visit_first( std::index_sequence<0,Is...>, Tup&& tup, F&& f ) {
    std::forward<F>(f)( std::get<0>( std::forward<Tup>(tup) ) );
  }
  template<class Tup, class F>
  void visit_all_but_first( std::index_sequence<>, Tup&&, F&& ) {}
  template<size_t... Is,class Tup, class F>
  void visit_all_but_first( std::index_sequence<0,Is...>, Tup&& tup, F&& f ) {
    int unused[] = {0,((void)(
      f( std::get<Is>(std::forward<Tup>(tup)) )
    ),0)...};
    (void)(unused);
  }
}
template<class Tup, class F>
std::enable_if_t<is_tupleoid<Tup>{}> visit_first(Tup&& tup, F&& f) {
  details::visit_first( std::make_index_sequence< std::tuple_size<std::decay_t<Tup>>{} >{}, std::forward<Tup>(tup), std::forward<F>(f) );
}
template<class Tup, class F>
std::enable_if_t<is_tupleoid<Tup>{}> visit_all_but_first(Tup&& tup, F&& f) {
  details::visit_all_but_first( std::make_index_sequence< std::tuple_size<std::decay_t<Tup>>{} >{}, std::forward<Tup>(tup), std::forward<F>(f) );
}

Una bonita impresión biblioteca:

namespace pretty_print {
  namespace decorator {
    struct default_tag {};
    template<class Old>
    struct map_magic_tag:Old {}; // magic for maps

    // Maps get {}s. Write trait `is_associative` to generalize:
    template<class CharT, class Traits, class...Xs >
    void pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, std::map<Xs...> const& ) {
      s << CharT('{');
    }

    template<class CharT, class Traits, class...Xs >
    void pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, std::map<Xs...> const& ) {
      s << CharT('}');
    }

    // tuples and pairs get ():
    template<class CharT, class Traits, class Tup >
    std::enable_if_t<is_tupleoid<Tup>{}> pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, Tup const& ) {
      s << CharT('(');
    }

    template<class CharT, class Traits, class Tup >
    std::enable_if_t<is_tupleoid<Tup>{}> pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, Tup const& ) {
      s << CharT(')');
    }

    // strings with the same character type get ""s:
    template<class CharT, class Traits, class...Xs >
    void pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, std::basic_string<CharT, Xs...> const& ) {
      s << CharT('"');
    }
    template<class CharT, class Traits, class...Xs >
    void pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, std::basic_string<CharT, Xs...> const& ) {
      s << CharT('"');
    }
    // and pack the characters together:
    template<class CharT, class Traits, class...Xs >
    void pretty_print_between( default_tag, std::basic_ostream<CharT, Traits>&, std::basic_string<CharT, Xs...> const& ) {}

    // map magic. When iterating over the contents of a map, use the map_magic_tag:
    template<class...Xs>
    map_magic_tag<default_tag> pretty_print_descend( default_tag, std::map<Xs...> const& ) {
      return {};
    }
    template<class old_tag, class C>
    old_tag pretty_print_descend( map_magic_tag<old_tag>, C const& ) {
      return {};
    }

    // When printing a pair immediately within a map, use -> as a separator:
    template<class old_tag, class CharT, class Traits, class...Xs >
    void pretty_print_between( map_magic_tag<old_tag>, std::basic_ostream<CharT, Traits>& s, std::pair<Xs...> const& ) {
      s << CharT('-') << CharT('>');
    }
  }

  // default behavior:
  template<class CharT, class Traits, class Tag, class Container >
  void pretty_print_before( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
    s << CharT('[');
  }
  template<class CharT, class Traits, class Tag, class Container >
  void pretty_print_after( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
    s << CharT(']');
  }
  template<class CharT, class Traits, class Tag, class Container >
  void pretty_print_between( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
    s << CharT(',');
  }
  template<class Tag, class Container>
  Tag&& pretty_print_descend( Tag&& tag, Container const& ) {
    return std::forward<Tag>(tag);
  }

  // print things by default by using <<:
  template<class Tag=decorator::default_tag, class Scalar, class CharT, class Traits>
  std::enable_if_t<!is_visitable<Scalar>{}> print( std::basic_ostream<CharT, Traits>& os, Scalar&& scalar, Tag&&=Tag{} ) {
    os << std::forward<Scalar>(scalar);
  }
  // for anything visitable (see above), use the pretty print algorithm:
  template<class Tag=decorator::default_tag, class C, class CharT, class Traits>
  std::enable_if_t<is_visitable<C>{}> print( std::basic_ostream<CharT, Traits>& os, C&& c, Tag&& tag=Tag{} ) {
    pretty_print_before( std::forward<Tag>(tag), os, std::forward<C>(c) );
    visit_first( c, [&](auto&& elem) {
      print( os, std::forward<decltype(elem)>(elem), pretty_print_descend( std::forward<Tag>(tag), std::forward<C>(c) ) );
    });
    visit_all_but_first( c, [&](auto&& elem) {
      pretty_print_between( std::forward<Tag>(tag), os, std::forward<C>(c) );
      print( os, std::forward<decltype(elem)>(elem), pretty_print_descend( std::forward<Tag>(tag), std::forward<C>(c) ) );
    });
    pretty_print_after( std::forward<Tag>(tag), os, std::forward<C>(c) );
  }
}

Código de prueba:

int main() {
  std::vector<int> x = {1,2,3};

  pretty_print::print( std::cout, x );
  std::cout << "\n";

  std::map< std::string, int > m;
  m["hello"] = 3;
  m["world"] = 42;

  pretty_print::print( std::cout, m );
  std::cout << "\n";
}

Ejemplo en vivo

Esto utiliza características de C++14 (algunos _t alias, y auto&& lambdas), pero ninguno es esencial.

 1
Author: Yakk - Adam Nevraumont,
Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/agent_stack/data/www/ajaxhispano.com/template/agent.layouts/content.php on line 61
2014-11-25 15:37:31